Adventures of Lolo 3/ROM map: Difference between revisions

From Data Crystal
Jump to navigation Jump to search
(Added addresses for math routines)
 
(6 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{rommap|game=Adventures of Lolo III}}
{{rommap|game=Adventures of Lolo III}}


==Room Data Pointers==
* <tt>0x1EDC6 - 0x1EE33 (006E)</tt> = Room data pointers (low byte)
* <tt>0x1EDC6 - 0x1EE33 (006E)</tt> = Room data pointers (low byte)
32 80 D0 2E 7A DA 3C 96 E0 66 F6 67 C5 2B A7 39
<pre>
AF 2D 90 0F 86 FC 93 02 87 27 BC 4C E4 88 1B AD
32 80 D0 2E 7A DA 3C 96 E0 66 F6 67 C5 2B A7 39
33 B3 46 DC 8C 1C C8 6C 21 BE 5A E7 85 0B 9F 27
AF 2D 90 0F 86 FC 93 02 87 27 BC 4C E4 88 1B AD
C9 61 F2 80 17 A0 34 D2 65 01 96 26 F2 79 0F AD
33 B3 46 DC 8C 1C C8 6C 21 BE 5A E7 85 0B 9F 27
4B E1 8B 16 9F 47 EB 70 E9 7C 14 A9 37 D6 6F FE
C9 61 F2 80 17 A0 34 D2 65 01 96 26 F2 79 0F AD
0F A1 2E D3 62 03 A6 3E DE 7B 24 BC 46 E2 8A 26
4B E1 8B 16 9F 47 EB 70 E9 7C 14 A9 37 D6 6F FE
B0 4B DC 69 00 8F 33 C4 49 E3 7C 0B A1 37
0F A1 2E D3 62 03 A6 3E DE 7B 24 BC 46 E2 8A 26
B0 4B DC 69 00 8F 33 C4 49 E3 7C 0B A1 37
</pre>


* <tt>0x1EE34 - 0x1EEA1 (006E)</tt> = Room data pointers (high byte)
* <tt>0x1EE34 - 0x1EEA1 (006E)</tt> = Room data pointers (high byte)
9C 9C 9C 9D 9D 9D 9E 9E 9E 9F 9F A0 A0 A1 A1 A2
<pre>
A2 A3 A3 A4 A4 A4 A5 A6 A6 A7 A7 A8 A8 A9 AA AA
9C 9C 9C 9D 9D 9D 9E 9E 9E 9F 9F A0 A0 A1 A1 A2
AB AB AC AC AD AE AE AF AE AE AF AF B0 B1 B1 B2
A2 A3 A3 A4 A4 A4 A5 A6 A6 A7 A7 A8 A8 A9 AA AA
B2 B3 B3 B4 B5 B5 B6 B6 B7 B8 B8 B9 AF B0 B1 B1
AB AB AC AC AD AE AE AF AE AE AF AF B0 B1 B1 B2
B2 B2 B3 B4 B4 B5 B5 B6 B6 B7 B8 B8 B9 B9 BA BA
B2 B3 B3 B4 B5 B5 B6 B6 B7 B8 B8 B9 AF B0 B1 B1
A3 A3 A4 A4 A5 A6 A6 A7 A7 A8 A9 A9 AA AA AB AC
B2 B2 B3 B4 B4 B5 B5 B6 B6 B7 B8 B8 B9 B9 BA BA
AC AD AD AE AF AF B0 B0 B1 B1 B2 B3 B3 B4  
A3 A3 A4 A4 A5 A6 A6 A7 A7 A8 A9 A9 AA AA AB AC
AC AD AD AE AF AF B0 B0 B1 B1 B2 B3 B3 B4  
</pre>


== Room Data ==
==Room Data==
* <tt>0x05C42 - 0x05C8F (004E)</tt> = 0<sub>A</sub>-1
* <tt>0x05C42 - 0x05C8F (004E)</tt> = 0<sub>A</sub>-1
* <tt>0x05C90 - 0x05CDF (0050)</tt> = 0<sub>A</sub>-2
* <tt>0x05C90 - 0x05CDF (0050)</tt> = 0<sub>A</sub>-2
Line 80: Line 85:
* <tt>0x07A7F - 0x07B0D (008F)</tt> = 13-4
* <tt>0x07A7F - 0x07B0D (008F)</tt> = 13-4
* <tt>0x07B0E - 0x07BAA (009D)</tt> = 13-5
* <tt>0x07B0E - 0x07BAA (009D)</tt> = 13-5


* <tt>0x0AE31 - 0x0AECD (009D)</tt> = 6-1
* <tt>0x0AE31 - 0x0AECD (009D)</tt> = 6-1
Line 102: Line 106:
* <tt>0x0B8A6 - 0x0B935 (0090)</tt> = 9-4
* <tt>0x0B8A6 - 0x0B935 (0090)</tt> = 9-4
* <tt>0x0B936 - 0x0B9D5 (00A0)</tt> = 9-5
* <tt>0x0B936 - 0x0B9D5 (00A0)</tt> = 9-5


* <tt>0x1A31F - 0x1A3B0 (0092)</tt> = 13-6
* <tt>0x1A31F - 0x1A3B0 (0092)</tt> = 13-6
Line 134: Line 137:
* <tt>0x1B3B1 - 0x1B446 (0096)</tt> = 17-9
* <tt>0x1B3B1 - 0x1B446 (0096)</tt> = 17-9
* <tt>0x1B447 - 0x1B4E8 (00A2)</tt> = 17-10
* <tt>0x1B447 - 0x1B4E8 (00A2)</tt> = 17-10
== Math Routines ==
* <tt>0x1de55 to 0x1e099</tt> = Multiplication of 2 8 bit numbers routine (effectively does: a * x)
* <tt>0x1e09a to 0x1e1c6</tt> = Division of 16 bit number by 8 bit number routine (effectively does: ((x << 8) + a) / y)
{{Internal Data}}

Latest revision as of 04:08, 15 June 2024

Chip tiny.png The following article is a ROM map for Adventures of Lolo 3.

Room Data Pointers

  • 0x1EDC6 - 0x1EE33 (006E) = Room data pointers (low byte)
32 80 D0 2E 7A DA 3C 96 E0 66 F6 67 C5 2B A7 39
AF 2D 90 0F 86 FC 93 02 87 27 BC 4C E4 88 1B AD
33 B3 46 DC 8C 1C C8 6C 21 BE 5A E7 85 0B 9F 27
C9 61 F2 80 17 A0 34 D2 65 01 96 26 F2 79 0F AD
4B E1 8B 16 9F 47 EB 70 E9 7C 14 A9 37 D6 6F FE
0F A1 2E D3 62 03 A6 3E DE 7B 24 BC 46 E2 8A 26
B0 4B DC 69 00 8F 33 C4 49 E3 7C 0B A1 37
  • 0x1EE34 - 0x1EEA1 (006E) = Room data pointers (high byte)
9C 9C 9C 9D 9D 9D 9E 9E 9E 9F 9F A0 A0 A1 A1 A2
A2 A3 A3 A4 A4 A4 A5 A6 A6 A7 A7 A8 A8 A9 AA AA
AB AB AC AC AD AE AE AF AE AE AF AF B0 B1 B1 B2
B2 B3 B3 B4 B5 B5 B6 B6 B7 B8 B8 B9 AF B0 B1 B1
B2 B2 B3 B4 B4 B5 B5 B6 B6 B7 B8 B8 B9 B9 BA BA
A3 A3 A4 A4 A5 A6 A6 A7 A7 A8 A9 A9 AA AA AB AC
AC AD AD AE AF AF B0 B0 B1 B1 B2 B3 B3 B4 

Room Data

  • 0x05C42 - 0x05C8F (004E) = 0A-1
  • 0x05C90 - 0x05CDF (0050) = 0A-2
  • 0x05CE0 - 0x05D3D (005E) = 0A-3
  • 0x05D3E - 0x05D89 (004C) = 0A-4
  • 0x05D8A - 0x05DE9 (0060) = 0A-5
  • 0x05DEA - 0x05E4B (0062) = 0B-1
  • 0x05E4C - 0x05EA5 (005A) = 0B-2
  • 0x05EA6 - 0x05EEF (004A) = 0B-3
  • 0x05EF0 - 0x05F75 (0086) = 0B-4
  • 0x05F76 - 0x06005 (0090) = 0B-5
  • 0x06006 - 0x06076 (0071) = 1-1
  • 0x06077 - 0x060D4 (005E) = 1-2
  • 0x060D5 - 0x0613A (0066) = 1-3
  • 0x0613B - 0x061B6 (007C) = 1-4
  • 0x061B7 - 0x06248 (0092) = 1-5
  • 0x06249 - 0x062BE (0076) = 2-1
  • 0x062BF - 0x0633C (007E) = 2-2
  • 0x0633D - 0x0639F (0063) = 2-3
  • 0x063A0 - 0x0641E (007F) = 2-4
  • 0x0641F - 0x06495 (0077) = 2-5
  • 0x06496 - 0x0650B (0076) = 3-1
  • 0x0650C - 0x065A2 (0097) = 3-2
  • 0x065A3 - 0x06611 (006F) = 3-3
  • 0x06612 - 0x06696 (0085) = 3-4
  • 0x06697 - 0x06736 (00A0) = 3-5
  • 0x06737 - 0x067CB (0095) = 3-6
  • 0x067CC - 0x0685B (0090) = 3-7
  • 0x0685C - 0x068F3 (0098) = 3-8
  • 0x068F4 - 0x06997 (00A4) = 3-9
  • 0x06998 - 0x06A2A (0093) = 3-10
  • 0x06A2B - 0x06ABC (0092) = 4-1
  • 0x06ABD - 0x06B42 (0086) = 4-2
  • 0x06B43 - 0x06BC2 (0080) = 4-3
  • 0x06BC3 - 0x06C55 (0093) = 4-4
  • 0x06C56 - 0x06CEB (0096) = 4-5
  • 0x06CEC - 0x06D9B (00B0) = 5-1
  • 0x06D9C - 0x06E2B (0090) = 5-2
  • 0x06E2C - 0x06ED7 (00AC) = 5-3
  • 0x06ED8 - 0x06F7B (00A4) = 5-4
  • 0x06F7C - 0x07001 (0086) = 5-5
  • 0x07002 - 0x07088 (0087) = 10-1
  • 0x07089 - 0x0711E (0096) = 10-2
  • 0x0711F - 0x071BC (009E) = 10-3
  • 0x071BD - 0x0725A (009E) = 10-4
  • 0x0725B - 0x072F0 (0096) = 10-5
  • 0x072F1 - 0x0739A (00AA) = 11-1
  • 0x0739B - 0x07425 (008B) = 11-2
  • 0x07426 - 0x074AE (0089) = 11-3
  • 0x074AF - 0x07556 (00A8) = 11-4
  • 0x07557 - 0x075FA (00A4) = 11-5
  • 0x075FB - 0x0767F (0085) = 12-1
  • 0x07680 - 0x076F8 (0079) = 12-2
  • 0x076F9 - 0x0778B (0093) = 12-3
  • 0x0778C - 0x07823 (0098) = 12-4
  • 0x07824 - 0x078B8 (0095) = 12-5
  • 0x078B9 - 0x07946 (008E) = 13-1
  • 0x07947 - 0x079E5 (009F) = 13-2
  • 0x079E6 - 0x07A7E (0099) = 13-3
  • 0x07A7F - 0x07B0D (008F) = 13-4
  • 0x07B0E - 0x07BAA (009D) = 13-5
  • 0x0AE31 - 0x0AECD (009D) = 6-1
  • 0x0AECE - 0x0AF69 (009C) = 6-2
  • 0x0AF6A - 0x0AFF6 (008D) = 6-3
  • 0x0AFF7 - 0x0B094 (009E) = 6-4
  • 0x0B095 - 0x0B11A (0086) = 6-5
  • 0x0B11B - 0x0B1AE (0094) = 7-1
  • 0x0B1AF - 0x0B236 (0088) = 7-2
  • 0x0B237 - 0x0B2D8 (00A2) = 7-3
  • 0x0B2D9 - 0x0B370 (0098) = 7-4
  • 0x0B371 - 0x0B401 (0091) = 7-5
  • 0x0B402 - 0x0B48F (008E) = 8-1
  • 0x0B490 - 0x0B526 (0097) = 8-2
  • 0x0B527 - 0x0B5AF (0089) = 8-3
  • 0x0B5B0 - 0x0B643 (0094) = 8-4
  • 0x0B644 - 0x0B6E1 (009E) = 8-5
  • 0x0B6E2 - 0x0B774 (0093) = 9-1
  • 0x0B775 - 0x0B810 (009C) = 9-2
  • 0x0B811 - 0x0B8A5 (0095) = 9-3
  • 0x0B8A6 - 0x0B935 (0090) = 9-4
  • 0x0B936 - 0x0B9D5 (00A0) = 9-5
  • 0x1A31F - 0x1A3B0 (0092) = 13-6
  • 0x1A3B1 - 0x1A43D (008D) = 13-7
  • 0x1A43E - 0x1A4E2 (00A5) = 13-8
  • 0x1A4E3 - 0x1A571 (008F) = 13-9
  • 0x1A572 - 0x1A612 (00A1) = 13-10
  • 0x1A613 - 0x1A6B5 (00A3) = 14-1
  • 0x1A6B6 - 0x1A74D (0098) = 14-2
  • 0x1A74E - 0x1A7ED (00A0) = 14-3
  • 0x1A7EE - 0x1A88A (009D) = 14-4
  • 0x1A88B - 0x1A933 (00A9) = 14-5
  • 0x1A934 - 0x1A9CB (0098) = 15-1
  • 0x1A9CC - 0x1AA55 (008A) = 15-2
  • 0x1AA56 - 0x1AAF1 (009C) = 15-3
  • 0x1AAF2 - 0x1AB99 (00A8) = 15-4
  • 0x1AB9A - 0x1AC35 (009C) = 15-5
  • 0x1AC36 - 0x1ACBF (008A) = 16-1
  • 0x1ACC0 - 0x1AD5A (009B) = 16-2
  • 0x1AD5B - 0x1ADEB (0091) = 16-3
  • 0x1ADEC - 0x1AE78 (008D) = 16-4
  • 0x1AE79 - 0x1AF0F (0097) = 16-5
  • 0x1AF10 - 0x1AF9E (008F) = 17-1
  • 0x1AF9F - 0x1B042 (00A4) = 17-2
  • 0x1B043 - 0x1B0D3 (0091) = 17-3
  • 0x1B0D4 - 0x1B158 (0085) = 17-4
  • 0x1B159 - 0x1B1F2 (009A) = 17-5
  • 0x1B1F3 - 0x1B28B (0099) = 17-6
  • 0x1B28C - 0x1B31A (008F) = 17-7
  • 0x1B31B - 0x1B3B0 (0096) = 17-8
  • 0x1B3B1 - 0x1B446 (0096) = 17-9
  • 0x1B447 - 0x1B4E8 (00A2) = 17-10

Math Routines

  • 0x1de55 to 0x1e099 = Multiplication of 2 8 bit numbers routine (effectively does: a * x)
  • 0x1e09a to 0x1e1c6 = Division of 16 bit number by 8 bit number routine (effectively does: ((x << 8) + a) / y)